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Heat transfer is invest igated,  on the basis of the l inear ized energy equation, in the in i t ia l  section of a 
two-dimensional  channel with laminar  flow of an incompressible fluid and a nonuniform temperature  
field at the entrance. Resuks of calculat ions of the temperature  field and Nusselt number Nu are given 
for various cross sections along the channel, 

The design and ca lcula t ion  of heat  exchangers frequently involves heat  transfer processes in short channels in 
which hydrodynamical ly  and thermal ly  s tabi l ized flow is not achieved and the working medium reaches the channel 
nonuniformly heated over the cross section. The heat  transfer coeff ic ient  and channel  wall  temperature  then depend on 
the temperature  field at the entrance. Let us examine the heat  transfer conditions in a two-dimensional  channel  for a 
steady flow of an incompressible viscous fluid for which the physical  properties Cp and X are independent of t empera -  
ture. For large Re numbers, i. e , ,  within the l imits  of boundary- layer  theory, the heat  transfer in a two-dimensional  
channel  is described by the energy equation [1]. 
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where the term taking into account energy dissipation in fr ict ion has been omit ted,  

In [2] the flow of a fluid in the entrance region of a tube was studied using the approximate  equation of motion 
O"u 

V a u  1 dp Jv '~ in which the term v Ou/0y was neglected in view of the smallness of the transverse 
o Ox - -  p dx ~ '  

veloci ty  component,  while in the coeff icient  at tached to the derivat ive Ou/~x the approximation u = V0 was intro-  
duced, where V0 is the mean  veloci ty  over the section of the fluid in the tube. The veloci ty  distribution and pressure 
in the tube obtained by solving this approximate  equation agreed well  enough with exper imenta l  data,  and at large 
distances from the entrance tended to the Poiseuille distribution. A certain difference from the exper imenta l  data,  ob -  
served in [2], is connected with the author's assumption that the term v Ou/Oy is small  compared with u 0u/0x. At 
the same t ime,  as follows from the Blasius solution, the ratio of the convection terms in the equation of motion,  
(y au/Oy)/(u Ou/~x), has a near ly  constant value of 0. 5 in the main  part of the boundary layer and only for u/V0 from 
0.85 to 0. 99, i. e . ,  near the outer edge of the boundary layer,  does it change (from 0.45 to 0. 33), 

Since the interact ion between the boundary layers formed near the upper and lower walls is smal l  in the entrance 
region of a two-dimensional  channel,  in solving the energy equation with Pr N 1, we are quite justified in considering 
the ratio of the convect ive terms to be constant, and in introducing a proport ionali ty constant s independent of the co -  
ordinates. 

Then the energy equation may  be written in the form 
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where the correction ~ takes into account the omit ted term v ST/By and the replacement  of the longi tudinal  ve loc i ty  

component  u by its mean  value over the channel  section Vo, equal to the fluid ve loc i ty  in the entrance region. It is 

shown in [3] that  s = 0. 346 Pr -1/s. 

Going over in (2) to the dimensionless variables ~ - - x / h ,  ~ = y/h, Pe = Gh/a and O =(T1 --T)/(T1 -- T0),gives 

a P e  .O0. = 020 (3) 

0~ 002 

Suppose that a fluid flow nonuniformly neared over its height enters a two-dimensional  channel  of height 2h, the 

fluid temperature  being given by the formula 

Tw = To + b ~ + c ~2. (4) 
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Introducing the dimensionless parameters {3 = b / ( T l  - -  To), Y = c / (T1  - -  To) ,  we have 

Obx = 1 - -  ~ - - W j  ~. (4 ') 

Note that a negat ive value of the true temperature T enters into the dimensionless temperature 0, so that m i n i -  
m u m  0 corresponds to max imum T, and v ice  versa. 

Let us make  the channel  wall  tempera ture  a l inear  function of the longitudinal  coordinate T =  T1 + A T1 ~ for 
= + 1. Going over to the dimensionless temperature ,  we have 

(5) 

where 8 = A T 1 / ( T t  - -  To).  

Thus, to find the temperature  distribution over the section of a two-dimensional  channel  with a given walt  t e m -  
perature, Eq. (3) must be solved with in i t i a l  condit ion (4) and boundary condition (5). 

In essence, Eq, (3) is an equation of unsteady heat  conduction, methods of solving which have been developed in 
de ta i l  in [4]. Applying a Laplace transform to (3) and using in i t ia l  condition (4), we obtain 

d~O,/d  ~ 2  s ~ P e  0 " +  ~ P e  (1 - -  ~-q --u = O. (6) 

Solving this equation and using boundary condit ion (5), we find 0% Expanding the expression for 0* in a series of e x -  
ponential  functions and then converting from the transform to the original ,  we obtain the f inal  solution for the t empera -  
ture distribution inside the channel  in terms of probabi l i ty  functions effc x and integrals of the probabil i ty functions 
i 2 eric x [41: 

ao 

~ P e  n=l 
co 

+ Per fc  2 + (Y - -  1) ( - - 1 )  n+l X 
n-~- I  

X [erfc (2n-- '--'~V-~)2 -}- erfc (2n-- 1 +'q,//'-Tp--~)] + 2  y ~ 
oo 

-I- I-- ,.~ -- 7,'-J-, E [erfc (2n-- 1 -- ~q /~) -- 
a~l -2- 

- -  erfc  2 e P e  g" 

(7) 

To find the Nu number based on tile loca l  difference between the wal l  temperature  and the bulk temperature  of 
the fluid, the heat  transfer coeff ic ient  must be determined:  

From this we obtain 

W 

(8) 

. . . .  (0m - -  Qw)" (9) 
k w 

It may be seen from (9) that to de termine  the loca l  Nu number the mean gas temperature  and the temperature  
gradient  at the wal l  must be found. We find the la t ter  by differentiat ing (7) with respect to ~. To determine  the in teg-  

ral  mean  fluid temperature ,  we must integrate the expression for the transform 0 * with respect to ~ in the in terval  
= - 1  to 77 = 1, and then convert from transform to original.  We then obtain 

0 = 1 23? 5 +  2 ( 3 7 - 1 )  . . . .  4(y--1)V  X 
m 3 Pe  V *  Pe 
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Using the expressions for the temperature gradient and the mean fluid temperature, we obtain 

Nu = A/B, (11) 
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B = 0 a v +  06. (11") 

Let us apply the relation obtained to heat transfer in short channels in which the flow in the stabilizing section is 
laminar even for Re > 3 �9 10 a. At a certain distance from the entrance, not exceeding g -< 100, for Re --> 3 ' 10 a the 
expression for Nu is much simplified. For Nu at the upper wall 0? = 1) we have 

+ + ,F / 
Nut~,=I = ~ 1 - -  y - -  ~ -F 206 s P e  (12) 

3 q- 0~ s P e  §  ~ s P e  Y ~ s P e  0 - 4 - y - - 1  

Figure 1 gives the Nu distribution along the upper channel wall (N = 1)for various values of y and 8. The smaller 
y, the lower the fluid temperature near the wall and the more the fluid is heated in the core of the flow. For negative 
y the fluid temperature near the wall is less than in the core, while for positive y the contrary holds true, Negative 
values of 8 correspond to the case when the coldest fluid layers are at the upper channel wall, and the most highly heat-  
ed layers at the lower wall, 

It may be seen by examining Fig, 1 that an increase in y leads to a decrease in Nu at the upper wall 01 = 1) and 
an increase at the lower wall (N = -1 ) .  There are three cases in which heat transfer conditions at the upper wall will 
vary, depending on the value of the expression (1 - y - 8). For (1 -- y -- 8) > 0 the gas temperature at the wall in 
the entrance section will be lower than the wall temperature, and heat transfer will take place from the wall to the gas, 
and the larger the value of (1 - 7  - 8 )  the greater the Nu number at the upper wall (curves 1-7). When (1 - 7  - 8 )  = 
r- 0, the gas temperature at the wall in the entrance section is equal to the wall temperature, and the Nu number near 
the entrance is constant over the channel length, its value depending on the temperature gradient at the wall in the 
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entrance section (curve 8). If (1 - ~, - ~3) < o, the gas temperature at the wall in the entrance section is higher than 
the wall temperature and heat transfer from the gas to the 
wall takes place (curves 9, 10). 

If heat flux through the walls of a two-dimensional 
channel is given, the boundary conditions may be written 
as follows: 

g =  + h, aT  = + q_!o +_ q s  x (is) 
OV - X Xh 

Let the temperature at the channel entrance be that 
given by (4). Introducing the dimensionless temperature 
Oq = (7 ' - -To ) /To ,  we see that, to determine the tem- 
perature distribution in the cham~el with the heat flux giv- 
en, it is necessary to solve (3) with the following boundary 
and initial conditions: 

.q = =d- 1, O Oq/O ~ = +_ Ko +- Kx ~, 
(14) 

where 13o -~ b/To, "~q ~-" c/To, [~0 = qo h/X To, /(1 = ql h/X To. 

Here the solution of (3) is 
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Fig. 1. Variation of local Nu number along a two- 

dimensional channel with a nonuniform tempera-  
ture field at the entrance and given wall tempera-  
ture, I~ ; 0, Pr = 0.7, Re = 104 . 3 = - - 1 :  1 - } , =  
= ( - 1 ) ,  7 - ( - 0 . 5 ) ,  8 - - 0 ,  9 - - 0 . 5 ,  1 0 - - 1 .  
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The Nu number is found in the same way as for the case of a given wall temperature. Finally, for g -< 100, Re >- 
-> 3 " 103 we obtain 

Nu]~=l ~ A/B, (16) 

A = Ko + K1 ~-, 

" I / / - - • -  -~-0,75 /(1~3/-2 9~q V / "  ~ B = 2 (Ko --2]'q) ~e Pe V-e pe ~ pe 
1 2 

Pe (Ko~ + KI~ 2 - 2yq~) + 13q + -~- yq. 

(17) 

(18) 

The variation of Nu with channel length is shown in Fig, 2. The singularity in Nu distribution over the channel 

length for the case yq < 0 is connected with the fact the mean mass temperature of the fluid near the entrance is lower 
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than the wall temperature, but at a certain distance from the entrance the wall temperature becomes equal to the mean  

mass temperature, i. e . ,  the denominator in the expression for the heat transfer coefficient a = k( 8 T / S y ) w / ( T  m - Tw) 
becomes equal to zero. As the distance from the entrance increases, (Tm - Tw) , and hence ct, becomes positive. 
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Fig. -2. Variation of local Nu over the length of 

a two-dimensional  channel  with a nonuniform 

temperature field at the entrance and given heat 

flux, K 0 -- !0, Bq= 0, Re =104 ,Pr = 0.7: 

1 - - y  = ( - -0 .5 ) ,  2--(--1). 

Fig. 3. Variation of local Nu over the length of 

a two-dimensional  channel  with a nonuniform 

temperature field at the entrance and given heat 

flux, K 0 = 10, Re =104 , Pr = 0.7: 1 - - 8 q = - - l ,  

yq= --i: 2 --gq =--I, 7q = I; 3--~q= I, yq 
=--i; 4--gq =I, 7q =I" 

Figure 3 gives the Nu distribution over the length of the channel at the upper wall, for the case yq ---- - - 1 . 1 ;  13q = 
= - - 1 . 1 .  It may be seen from Fig. 3 that the smaller the sum (yq + Bq), the farther from the entrance the discontinu- 

ity in the dependence of Nu on g. Moreover, the smaller the vatues of yq and Bq, the larger the value of Nu in the 
positive branch. Note that the presence of discontinuities in Nu over the length is inherently characteristic of flow with 

a nonuniform temperature distribution at the entrance and is related to the fact that the heat transfer coefficient y is 

usually calculated from the difference between the wall temperature and the mean flow temperature. If the heat trans- 

fer coefficient (x is determined from the difference between the wall temperature and the min imum fluid temperature 

at the entrance section, then a and Nu, thus determined, will not have discontinuities, but these quantities will be 

less convenient for practical calculations, 

From the foregoing analysis of the effect of a nonuniform temperature field on heat transfer in a channel  it fol-  

lows that the presence in the entrance section of an increased temperature in the flow core and a region of low tempera-  
ture near the wa!l leads, for a given wall temperature, to enhanced heat transfer as compared with the case of a uniform 
temperature field at the entrance and a given heat flux, which leads to a reduction in wall temperature. At the same 

t ime,  the presence of a region of elevated temperature near the wall and reduced temperature in the flow core causes a 

deterioration in the heat  transfer when the walt temperature is given, and an increase in wall  temperature when the 

heat flux is given. 

NOTATION 

x, y - longitudinal and transverse coordinates; u, v - longitudinal and transverse velocity components; V0 - fluid 

velocity in entrance section of channel; T -- fluid temperature; a - thermal diffusivity; k - thermal conductivity; 2h -- 

height of two-dimensional  eharmel. 
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