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Heat transfer is investigated, on the basis of the linearized energy equation, in the initial section of a
two~dimensional channel with laminar flow of an incompressible fluid and a nonuniform temperature
field at the entrance, Resulis of calculations of the temperature field and Nusselt number Nu are given
for various cross sections along the chamel,

The design and calculation of heat exchangers frequently involves heat transfer processes in short channels in
which hydrodynamically and thermally stabilized flow is not achieved and the working medium reaches the channel
nonuniformly heated over the cross section, The heat transfer coefficient and channel wall temperature then depend on
the temperature field at the entrance, Let us examine the heat transfer conditions in a two-dimensional channel for a
steady flow of an incompressible viscous fluid for which the physical properties ¢, and A are independent of tempera-
ture, For large Re numbers, i.e,, within the limits of boundary-layer theory, the heat transfer in a two-dimensional
channel is described by the energy equation [1}:
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where the term taking into account energy dissipation in friction has been omitted,

In [2] the flow of a fluid in the entrance region of a tube was studied using the approximate equation of motion
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velocity component, while in the coefficient attached to the derivative du/dx the approximation u = V4, was intro-
duced, where V, is the mean velocity over the section of the fluid in the tube. The velocity distribution and pressure
in the tube obtained by solving this approximate equation agreed well enough with experimental data, and at large
distances from the entrance tended to the Poiseuille distribution. A certain difference from the experimental data, ob-
served in [2], is connected with the author's assumption that the term v 8u/dy is small compared with u du/0x. At
the same time, as follows from the Blasius solution, the ratio of the convection terms in the equation of motion,
(y 0u/dy)/(u du/0x), has a nearly constant value of 0.5 in the main part of the boundary layer and only for u/Vy from
0. 85 to 0. 99, i,e,, near the outer edge of the boundary layer, does it change (from 0. 45 to 0, 33).

, in which the term v du/dy was neglected in view of the smallness of the transverse

Since the interaction between the boundary layers formed near the upper and lower walls is small in the entrance
region of a two-dimensional channel, in solving the energy equation with Pr ~ 1, we are quite justified in considering
the ratio of the convective terms to be constant, and in introducing a proportionality constant & independent of the co-
ordinates,

Then the energy equation may be written in the form
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where the correction ¢ takes into account the omitted term v 9T /0y and the replacement of the longitudinal velocity
component u by its mean value over the channel section Vy, equal to the fluid velocity in the entrance region. It is

shown in [3] that & = 0, 346 Pr “1/3
Going over in (2) to the dimensionless variables £ = x/A, v = y/h, Pe = Vih/aand b =(T; —T)/(T; — T,),gives
d6 %6 (3)
dt ov
Suppose that a fluid flow nonuniformly neated over its height enters a two-dimensional channel of height 2h, the
fluid temperature being given by the formula

Tp=T, +bn-+ct 4)
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Introducing the dimensionless parameters 3 = b/(T; —T,), v = c¢/(T;—T), we have

Bpe=1—fBn—yv2 4"

Note that a negative value of the true temperature T enters into the dimensionless temperature , so that mini-
mum 6 corresponds to max1mum T, and vice versa,

Let us make the channel wall temperature a linear function of the longitudinal coordinate T=T;+ ATyt for
1 = +1. Going over to the dimensionless temperature, we have

q— £ 1, 6=—0E (5)

where % = AT /T, — T,).

Thus, to find the temperature distribution over the section of a two-dimensional channel with a given wall tem-
perature, Eq. (3) must be solved with initial condition (4) and boundary condition (5).

In essence, Eq. (3) is an equation of unsteady heat conduction, methods of solving which have been developed in
detail in [4]. Applying a Laplace transform to (3) and using initial condition (4), we obtain

d0%/dn* —sePeb*+ePe (1 — B —yy?) =0. (6)
Solving this equation and using boundary condition (5), we find 6*. Expanding the expression for 6% in a series of ex -

ponential functions and then converting from the transform to the original, we obtain the final solution for the tempera-
ture distribution inside the channel in terms of probability functions erfc x and integrals of the probability functions

i? erfc x [4];
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To find the Nu number based on the local difference between the wall temperature and the bulk temperature of
the fluid, the heat transfer coefficient must be determined:
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It may be seen from (9) that to determine the local Nu number the mean gas temperature and the temperature
gradient at the wall must be found, We find the latter by differentiating (7) with respect to 1. To detemmine the integ-
ral mean fluid temperature, we must integrate the expression for the transform 6 * with respect to 7 in the interval
1 = —1 ton =1, and then convert from transform to original. We then obtain

From this we obtain
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Using the expressions for the temperature gradient and the mean fluid temperature, we obtain

n==1

n=z1

Nu = A/B, (11)
2 “Pe \ “Pe
aen () T B ey T
— ierfc (nl/ elge ) 4y —1) l/ cPe Z(—~I)’”1

e Pe
X{ exp[ (n—1)? ]——

(11%)
el B o T
X :!exp{ (n— 1)? e}+
Sh 3
+ e ( 2 e Pe )]
exp | = — i,
B =8,,+ 8¢, ’ 1im

Let us apply the relation obtained to heat transfer in shost channels in which the flow in the stabilizing section is
laminar even for Re > 3 +10®, At a certain distance from the entrance, not exceeding £ =100, for Re =3 - 10% the
expression for Nu is much simplified, For Nu at the upper wall (n = 1) we have
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Figure 1 gives the Nu distribution along the upper channel wall ( = 1) for various values of y and B. The smaller
7, the lower the fluid temperature near the wall and the more the fluid is heated in the core of the flow. For negativé
y the fluid temperature near the wall is less than in the core, while for positive y the contrary holds true, Negative
values of B correspond to the case when the coldest fluid. layers are at the upper channel wall, and the most highly heat-
ed layers at the lower wall,

It may be seen by examining Fig, 1 that an increase in y leads to a decrease in Nu at the upper wall (n = 1) and
an increase at the lower wall (n = —1), There are three cases in which heat transfer conditions at the upper wall will
vary, depending on the value of the expression (1 — y —8), For (1 —y —8) > 0 the gas temperature at the wall in
the entrance section will be lower than the wall temperature, and heat transfer will take place from the wall to the gas,
and the larger the value of (1 —7y —B) the greater the Nu number at the upper wall (curves 1-7). When (1 —y —8) =
= 0, the gas temperature at the wall in the entrance section is equal to the wall temperature, and the Nu number near
the entrance is constant over the channel length, its value depending on the temperature gradient at the wall in the
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entrance section (curve 8). If (1 —y—B) < 0, the gas tempera.ture at the wall in the entrance section is higher than
the wall temperature and heat transfer from the gas to the
wall takes place (curves 9, 10).

Nu
If heat flux through the walls of a two-dimensional T
channel is given, the boundary conditions may be written » \\\ L/ ;
as follows; : 3
| >\§ 4
or x 0
y=xh = h I gy e T
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Let the temperature at the channel entrance be that ~ (r(/g’“ |
given by (4). Introducing the dimensionless temperature 10
bg = (T—Ty)/T,, we see that, to determine the tem-
perature distribution in the channel with the heat flux giv- Y
en, it is necessary to solve (3) with the following boundary —a 7 2 W &
and initial conditions:
= - 2
£=0, 6= 54'_’1 + Vg (14) Fig. 1. Variation of local Nu number along a two-
n= +1, 00,/0m =+ K, + K, E, dimensional channel with a nonuniform tempera-
ture field at the entrance and given wall tempera-
where by = b/Ty, Vg = /Ty, Ky = qoh/LTy, Ky = qh/iT,. ture, $ =0, Pr=0,7, Re =104, B=—-1:1—y =

S =(-1), 7 =(=0.5), 8 =0, 9 ~0,5, 10 —1,

Here the solution of (3) is
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The Nu number is found in the same way as for the case of a given wall temperature, Finally, for £ = 100, Re =
=3 *10° we obtain

Nufyt = A/B, (16)
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The variation of Nu with channel length is shown in Fig, 2, The singularity in Nu distribution over the channel
length for the case yq < 0 is connected with the fact the mean mass temperature of the fluid near the entrance is lower
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than the wall temperature, but at a certain distance from the entrance the wall temperature becomes equal to the mean
mass temperature, i, e., the denominator in the expression for the heat transfer coefficient o« = A(3T/dy )y /(T — Tw)
becomes equal to zero, As the distance from the entrance increases, (T, — Ty)s and hence ¢, becomes positive.
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Fig, 2. Variation of local Nu over the length of Fig, 3, Variation of local Nu over the length of
a two-dimensional channel with a nonuniform a two-dimensional channel with a nonuniform
temperature field at the entrance and given heat temperature field at the entrance and given heat
flux, Ko =10, Bq =0, Re = 104, Pr = 0, 7: flux, Ko = 10, Re =10%, Pr = 0,7: 1 =Bg = ~1,
1 —y=(~05), 2 —(~1). Vq= ~Li2—-By=-1 7q= 1i3=Bg=1,7q

==1;4=Bg=1, 74 = L.

Figure 3 gives the Nu distribution over the length of the channel at the upper wall, for the case Y, = —1.1; B, =
= —1.1. It may be seen from Fig, 3 that the smaller the sum (yq +B¢), the farther from the entrance the discontinu-
ity in the dependence of Nu on £, Moreover, the smaller the values of Yq and ﬁq, the larger the value of Nu in the
positive branch, Note that the presence of discontinuities in Nu over the length is inherently characteristic of flow with
a nonuniform temperature distribution at the entrance and is related to the fact that the heat transfer coefficient y is
usually calculated from the difference between the wall temperature and the mean flow temperature, If the heat trans-
fer coefficient o is determined from the difference between the wall temperature and the minimum fluid temperature
at the entrance section, then o and Nu, thus determined, will not have discontinuities, but these quantities will be
less convenient for practical calculations,

From the foregoing analysis of the effect of a nonuniform temperature field on heat transfer in a channel it fol-
lows that the presence in the entrance section of an increased temperature in the flow core and a region of low tempera-
ture near the wall leads, for a given wall temperature, to enhanced heat transfer as compared with the case of a uniform
temperature field at the entrance and a given heat flux, which leads to a reduction in wall temperature, At the same
time, the presence of a region of elevated temperature near the wall and reduced temperature in the flow core causes a
deterioration in the heat transfer when the wall temperature is given, and an increase in wall temperature when the
heat flux is given,

NOTATION

%,y — longitudinal and transverse coordinates; u,v — longitudinal and transverse velocity components; Vo — fluid
velocity in entrance section of channel; T — fluid temperatute; ¢ — thermal diffusivity; A — thermal conductivity; 2h —
height of two~dimensional channel,
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